ONE POT SYNTHESIS OF a-BROMO AND a-IODO KETONES FROM EPOXIDES

J.N. Denis and A. Krief*

Facultés Universitaires N.D. de la Paix, Department of Chemistry, 61, rue de Bruxelles, B-5000 - Namur, Belgium

 α -bromo and α -iodo ketones are obtained in good yield and in one pot by reaction of terminal and disubstituted epoxides with trimethylsilyl halides and further oxidation (Cr03/H₂SO₄).

We have recently described ¹ that disubstituted epoxides are transformed to olefins when reacted with two equivalents of iodotrimethylsilane in the presence of triethylamine. We observed ¹ the intermediary formation of β -silyloxyalkyliodides when only one equivalent of trimethylsilyl iodide was used. We also showed ¹ that 1-iodo-2-trimethylsilyloxydodecane was regioselectively obtained in 82% isolated yield when 1,2-oxidododecene was reacted under similar conditions [Me₃SiI : (2.2 eq), triethylamine (3 eq), CCl₄, 0°, 0.5 hr] (Scheme I.A).

Several papers 2,3 presenting the same reaction under conditions close to ours have appeared since that time. One of the authors 2 attributes a reversed ring opening in the case of terminal epoxides (Scheme I.B).

SCHEME I

A
$$CH_3(CH_2)_9$$
 $CH-CH_2$ $\xrightarrow{Me_3SiI}$ $CH_3(CH_2)_9$ $CH-CH_2I$ (Ref.1)
B $CH_3CH_2CH-CH_2$ $\xrightarrow{Me_3SiI}$ $CH_3CH_2CH-CH_2OSiMe_3$ \xrightarrow{DBU} $CH_3CH=CH-CH_2OSiMe_3$ (Ref.2)

This paper discloses our results concerning the reaction of iodotrimethylsilane [Me₃SiI (1.5 eq), Et₃N (1.65 eq), CH₂Cl₂, 0°, 0.5 hr] and bromotrimethylsilane [Me₃SiBr (1.5 eq), Et₃N (1.65 eq), CH₂Cl₂, 50-55°, 2.5-3 hr] with several terminal and disubstituted epoxides <u>1</u>. The resulting β -silyloxyalkylhalides <u>2</u> were on the one hand isolated and the ratio of the regioisomers carefully determined by $|GC|^2$ (capillary column OVI, HL, 50m, 0.5mm). On the other hand, the crude mixtures were further directly subjected to an oxidation reaction using 4 fold excess of Jones reagent [CrO₃/H₂SO₄ (4 eq), CH₂Cl₂, 0°, 0.75 hr] leading to α -halo carbonyl compounds <u>3</u> in high yield (see experimental part). Decreased yields in α -halo ketone are observed if lower amount of Jones reagent is used . This one pot procedure should be valuable for the synthesis of such derivatives.

The high yield formation of α -halo ketones instead of α -haloacids support our previous structure assignment ¹.

The α -bromoacid resulting from the oxidation of the minor isomer <u>2b</u> has been in one instance isolated from the oxidation of the crude mixture (see the table, entry 5)⁶. Its percentage compared to the one of the α -bromo ketone reflects the ratio of the starting β -silyloxyalkyl-bromides. We were, however, unable to get the iodoacid from the reaction performed with

SCHEME II				
R	e1-CH-CH-R2 O' Et3N/CH	$\frac{X}{R_2C1_2} \xrightarrow{R_1CH-CHR_2}_{X \text{ OTNS}} \xrightarrow{Cro_3/H_2SO_4}_{CH_2C1_2}$	R ₁ -CH-C-R ₂ X 0	X = Br,I TMS = SiMe ₃
•	<u>1</u>	2	<u>3</u>	
Entry	Epoxide <u>1</u>	2 ratio of regioisomers before TLC purification	Overall yield in <u>2</u>	<u>3</u> overall yield from <u>1</u> % (mp)
	RCH-CH2	R-CH-CH ₂ -X + RCH-CH ₂ OTMS		
		X R <u>2a 2b</u>		3
1		$I C_{2H_5}$ (84) (16)	82	63
2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	71
4		I $C_{10}H_{21}$ (80) (20)	77	73 (50°)
5		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	58 (40~41°)
7	H H C ₈ H ₁₇ -¢-¢-C ₈ H ₁₇ O erythro	с ₈ н ₁₇ -сн-сн-с ₈ н ₁₇ і отмя	93	^C 8 ^H 17 ^{-CH-C-C} 8 ^H 17 ^{:66} 1 0 ^(50°)
	On O	otms on x		
	n	n X		n X
8	1		91	1 I : 56
10	3	, 1 3 Br	88	3 Br : 91

iodotrimethylsilane4.

We have repeated the reaction described by Sakurai² under his conditions [1,2-oxidobutene (1 mmol), Me₃SiI (1 mmol), Toluene,-78°, 0.5 hr ; 20°, 1 hr]. The percentage of the regioisomers is close to the one observed when the reaction is performed under our conditions. Moreover if the reaction mixture is treated² with DBU, only the minor isomer, to which we have attributed the structure 2b (Table) disappears and is transformed to the silylated 2-butene-1-ol. (schemeIB).

These results and the ones disclosed above, unambiguously confirm our regiochemical assignements for 2.

References and notes

- 1. J.N. Denis, R. Magnane, M. Van Eenoo and A. Krief, Nouveau J. Chim., 3, 705 (1979).
- 2. H. Sakurai, K. Sasaki and A. Hosomi, Tet. Lett., 2329 (1980).
- 3. G.A. Krauss and K. Fraser, J. Org. Chem., <u>45</u>, 2579 (1980).
- 4. A 83/17 mixture of biodo-2-butanol a and 2-iodo-1-butanol b have been prepared ⁵ from 1,2-oxy-dobutene (81% yield). After purification a and b have been subjected to Jones oxidation. The β-iodo ketone was obtained in 88% yield from a. We were however unable to isolate the β-iodo-acid from the other regioisomer.
- 5. J.W. Cornforth and D.T. Green, J.C.S. Chem. Comm. (C), 846 (1970).
- 6. 13% of the α-bromoacid was isolated as his ester : nC₆H₁₃CHBrCOOCH3.

Experimental. Oxidocyclooctene (Aldrich, 504 mg, 4 mmol) in CH_2Cl_2 (4 ml) is added at 20° to a solution of bromotrimethylsilane (920 mg, 6 mmol) and triethylamine (660 mg, 6.6 mmol) in CH_2Cl_2 (8 ml). The solution is heated at 55° for 2.5 hr then cooled down to 0°. Jones reagent [$CrO_3(l_36g, 16 \text{ mmol})$]. H_2SO_4c (1.4 ml) in water (4.5 ml)] is then added and the mixture stirred for a further 0.75 hr at this temperature. After quenching with water/thiosulfate solution and usual work-up, the crude mixture is purified by TLC (SiO_2, pH-7, ether/pentane: 10/90). 2-bromo cyclooctanone 745 mg (rf: 0.42) is isolated in 91% yield.

(Received in UK 5 January 1981)